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Abstract

Automatic 3D segmentation of the brain from MR scans is a challenging problem
that has received enormous amount of attention lately. Of the techniques reported in
literature, very few are fully automatic. In this paper, we present an efficient and accurate,
fully automatic 3D segmentation procedure for brain MR scans. It has several salient
features namely, (1) instead of a single multiplicative bias field that affects all tissue
intensities, separate parametric smooth models are used for the intensity of each class.
(2) A brain atlas is used in conjunction with a robust registration procedure to find a
non-rigid transformation that maps the standard brain to the specimen to be segmented.
This transformation is then used to: segment the brain from non-brain tissue; compute
prior probabilities for each class at each vozxel location and find an appropriate automatic
initialization. (3) Finally, a novel algorithm is presented which is a variant of the EM
procedure, that incorporates a fast and accurate way to find optimal segmentations, given
the intensity models along with the spatial coherence assumption. FExperimental results
with both synthetic and real data are included, as well as comparisons of the performance
of our algorithm with that of other published methods.

1 Introduction

Image segmentation is a fundamental problem in image processing and computer vision with
numerous applications including but not limited to medical image analysis, image compres-
sion, etc. Three-dimensional processing and visualization of medical images is a rapidly grow-
ing area of research and MRI has provided a means for imaging tissue at very high resolutions
providing the desired information for use in fields like reparative surgery, radiotherapy treat-
ment planning, stereotactic neurosurgery and others [24]. In the context of neuro-imaging,
3-D segmentation of white matter (WM), gray matter (GM) and Cerebro-spinal fluid (CSF)



is extremely important for quantitative analysis such as volume measurements. It has already
been established that volumetric analysis of different parts of the brain is useful in assessing
progress or remission of various diseases e.g., the Alzheimer’s [11] and epilepsy [19].

The main difficulties found in the automatic segmentation of MR brain images derive
from the fact that image intensities are not necessarily constant for each tissue class. Thus,
traditional clustering schemes, such as those reported in [7, 24], or methods based on thresh-
olding [37] do not yield desired results. An additional difficulty stems from the presence of
noise in the data, which causes pixel-wise classification methods to give unrealistic results,
where the regions corresponding to each tissue class may appear granular, fragmented, or
violating anatomical constraints. Thus, it is necessary to devise methods that simultaneously
include the estimation of variable intensity models for each class, and prior knowledge about
the location and spatial coherence of the corresponding regions.

The most natural framework for the design of such methods is probabilistic, and involves
the simultaneous estimation of a discrete field (the tissue class) and a continuous one (the cor-
responding intensities). Spatial coherence assumptions may be incorporated using a Bayesian
approach, in the form of prior Markov Random Field (MRF) models [17, 29], and anatomical
constraints about the location of each class may be specified as prior probabilities, obtained
from statistical studies [31]. The resulting estimation procedure is iterative, and consists, in
general, of 2 steps that are repeated until convergence:

1. Estimate the most likely segmentation, given the intensity models for each class.
2. Estimate the intensity models, given a segmentation,

with an appropriate initialization step.

If a “soft” segmentation is computed in the first step, i.e., if one computes the marginal
probabilities for each tissue class, this iterative procedure is equivalent to the Expectation
maximization (EM) algorithm [12], and it has been used by a number of researchers [18, 4, 36,
42, 26, 30, 31]. The efficiency of these methods, however, has been limited by several factors.
If no spatial coherence assumptions are included, the estimation of the posterior marginal
probabilities for each class at each voxel is straightforward and computationally efficient (as
in [42]); the quality of this type of segmentation, however, degrades rapidly if noise is present
in the data. If, on the other hand, spatial coherence assumptions are included, the exact
computation of the optimal segmentation becomes intractable, so that approximations must
be made. The most precise are based on Markov Chain Monte Carlo (MCMC) methods,
such as the Gibbs Sampler or Metropolis algorithms [17], but are computationally very
expensive. Deterministic approximations, such as the ones based on Mean Field (MF) Theory
[44, 16, 43, 22] (as used in [31]) are faster, although less precise and more vulnerable to noise
[33].

As an alternative, one can estimate a hard segmentation in the first step. Here, one has
to choose an appropriate cost function, to get the corresponding optimal estimator (e.g.,
the Maximum a Posteriori (MAP) or the Maximizer of the Posterior Marginals (MPM)
estimators). It was shown in [32], that for low SNR (signal to noise ratio), the MPM criterion
yields superior segmentation results whereas for high SNR, both are more or less equivalent.



Another important issue to be taken into consideration is: for a given criterion, what is the
best algorithm for finding the optimal estimator? Computational efficiency is a crucial issue
that influences the answer to this question. Again, in the presence of immense computational
resources, MCMC schemes (such as Simulated Annealing [27] as used in [21] for computing
the MAP) are very apt. On the other hand, if computational efficiency is of high priority,
it is necessary to resort to viable approximations, such as the ICM algorithm [3] used in
[34, 21, 35, 45] for computing the MAP, which is very fast, but highly vulnerable to noise. It is
also possible to use the MF or the Gauss-Markov Measure Field (GMMF) [33] approximations
for computing the MPM. In [33], it is shown that for low SNR, GMMF is found to be superior
to MF, both in terms of accuracy and of computational efficiency. For medium-high SNR
MF and GMMF give equivalent results, but GMMF is faster.

The computation of the image intensity model parameters associated with each tissue
class for a given segmentation (step 2) is complicated by the fact that both intrascan and
interscan intensity inhomogeneities often appear, due to poor radio frequency coil uniformity,
operating conditions of the MR equipment, etc. These inhomogeneities are usually modeled
as a single multiplicative degradation (bias field) that affects a constant intensity model for
each class [42, 26, 35, 30, 31]. Thus, the intensity associated to class k at voxel r is usually
modeled as:

L(r) = B (1)
where the bias field 3 is assumed to have a slow spatial variation, and uj denotes the unknown
constant intensity for class k. This intensity model, however, may not be very realistic: there
may be variations in the magnetic susceptibility of the tissues; attenuation may be different
depending on the location of anatomical structures, etc. To compensate for these effects, in
121] a Parzen-window distribution is used to model the conditional probability of the intensity
for each tissue class. This distribution, however, requires of high level user intervention to
be defined in each case, and leads to equations that are, in practice, too complicated to be
solved exactly.

An additional complication introduced by model (1) is that to make it computationally
tractable, the multiplicative degradation must be transformed into an additive one by means
of a logarithmic transformation, which has the undesirable effect of altering the intensity dis-
tribution, making the tissue separation more difficult, and also, making the additive Gaussian
noise assumption invalid for the transformed data. A further difficulty comes from the fact
that non—brain tissue may be wrongly classified as gray or white matter in the segmenta-
tion step, leading to wrong estimated values for the class intensities. This may be avoided
if the brain/non-brain separation is effected prior to segmentation, either manually (as in
[35]), or automatically, using for example, active contours [2], active brain templates [35] or
registering a standard brain atlas [31].

In summary, while the Bayesian approach to MRI segmentation appears to be very
promising, there are several problems which limit its performance and need resolution prior
to making it a feasible approach. Below is an itemization of these problems (not necessarily
in any specific order).

1. If spatial coherence assumptions are included, an exact computation of the optimal



segmentation at each step becomes intractable and approximations are either compu-
tationally expensive or inaccurate.

2. A single bias field affecting all tissue classes equally may not be realistic.

3. A multiplicative bias model may require a logarithmic transformation that distorts the
intensity distribution and makes the Gaussian assumption for the noise distribution
invalid.

4. Computation of the intensity models for the tissue classes is made rather difficult by
the presence of misclassified non-brain tissue.

5. Appropriate initialization of the iterative procedure is difficult to find in a fully auto-
matic way.

The goal of this paper is to present a fully automatic Bayesian—based scheme that over-
comes these difficulties, and thus, has superior performance. To achieve this, our method
incorporates the following features:

1. Instead of a single multiplicative bias field that affects all tissue intensities, we propose
separate parametric, smooth models for the intensity of each class. This may be a
more realistic model and avoids the need for a logarithmic transformation and hence
the related nonlinear distortions.

2. We propose the use of a brain atlas (as in [31]), together with a robust registration
procedure to find a non-rigid transformation that maps the standard brain to the
specimen to be segmented. This transformation is then used to segment the brain from
non—brain tissue; compute prior probabilities for each class at each voxel location and
find an appropriate automatic initialization.

3. We propose a novel variant of the EM algorithm [12] which allows for the use of a
fast and accurate way to find optimal segmentations, given the intensity models which
incorporate the spatial coherence assumptions.

The rest of this paper is organized as follows: the above described algorithm features are
elaborated upon in section 2. Section 3 contains the experimental validation of the complete
procedure, and finally some conclusions are drawn in section 4.

2 An Improved Bayesian Approach to MRI Segmentation

In this section, we first present a Bayesian formulation of the segmentation problem followed
by a novel, accurate and efficient 3D segmentation algorithm which is dubbed the MPM-MAP
algorithm.



2.1 Bayesian Formulation of the Segmentation Problem

In a Bayesian approach to segmentation, one specifies the distribution of the observation
noise, and introduces the prior constraint about the spatial coherence of the support regions
in the form of a prior probability distribution on the set of possible segmentations. To
describe this approach, we introduce the following notation: let I denote the voxel lattice,
and {g(r), r € L} denote the observed MR volume; let {®(r;0;),k = 1, ..., K} denote a set of
models characterized by the parameter vector § = (01, ..., 0 ), which describe the variation of
the value of a property f over L. Note that f may represent a scalar valued data representing
the intensity values in a 3D volume, or it may be a vector valued function defined on a 3D
image grid (e.g., for multimodal data). Each model k is supposed to be valid in a region
Ry, C L, so that the value of the field f at pixel r is f(r) = Sr_q ®(r; 0))bg(r), where by(r)
is the indicator function for region Ry, i.e., bx(r) = 1 if r € Ry, and bg(r) = 0, otherwise.
Assuming a Gaussian observation noise model, the likelihood of the data given the models
and the support regions is :

1
P(g[b,0) = Z—LHTGLﬂlelk(r)bk(’)

where 7, is a constant and
l(r) = Pr(g(r)|0,bx(r) =1) (2)
=\ Zexp [1lor) - 2, 0]

where v is a parameter that depends on the noise variance (i.e., we are assuming that the
noise is independent of the tissue class). One may also have prior probabilities that specify
the probability of the voxel at location r belonging to each of the classes. We will denote
these probabilities by g (r) = Pr(voxel r € class k). The constraint for the spatial coherence
of the support regions {Rj,..., Rk} may be expressed, in probabilistic terms, in the form
of a prior Markov Random Field (MRF) model on the indicator variables b; in particular,
one may assume a prior generalized Ising (Potts) model [32], where the neighborhood N, of
each site € L is formed only by its nearest neighbors (in a 2-D image there are four such
neighbors, and in a 3-D volume image there are 6 in the simplest neighborhood system, which
is the one we use in all the experiments reported in this paper). This gives the prior Gibbs
distribution: P,(b) = Z%, exp [ﬁ Yoerss V(0(r), b(s))} Where, Z, is a normalizing constant, 3
is a positive parameter controlling the granularity of the regions, the summation is performed
over all nearest—neighbor pairs of sites in L and the Ising potential V7 is given by,

Vi (b(r),b(s)) = { —1 LR be(r)bi(s) = 1 )

1 , otherwise

(note that by(r) € {0,1} and that S5, bp(r) = 1 for all r € L).



The posterior distribution is computed using Bayes rule and is of the form: P(b,0|g) =
Lexp [~U(b,0)], where Z is a normalizing constant and

K
U®d,0) = —=> > [be(r)logle(r) + log g(r)]

rel k=1

+5 3" Vi(b(r), b(s)) + log P(6) (4)

<r,s>

where [ (r) is given by Eq. (2), and P(6) represents the prior distribution of the parameters
that define each intensity model.

In the classical Expectation Maximization (EM) approach [12], the b variables are con-
sidered “missing data” and U is minimized in a 2-step procedure consisting of an (E) step
in which one first computes the expected value < b > of the b variables, given an estimate of
the model parameters 6, while in the second (M) step, one minimizes the U function, where
the b variables are replaced by their expected value. The drawback of this approach lies in
the computational complexity associated with the computation of < b >: since the variables
are binary, their expected value is equal to the posterior marginal probabilities given by

m(r) = Pr(u(r) =10.9) = Y Zexp[-U(0,6)] )
bibg (r)=1

It is clear that the summation in (5) has too many terms to be exactly computed, so it has
to be approximated. There are several methods that have been proposed for estimating the
posterior marginals of discrete—valued MRF’s: stochastic approaches based on the construc-
tion of regular Markov chains [17, 32|, and deterministic approaches based on the mean—field
approximation [16, 44] in which the estimated marginals are obtained as solutions of large
systems of coupled non-linear equations. These approaches, however, are computationally
very expensive. Other methods [43, 22] that also involve mean field approximations using
different cost functions require solution to a large coupled system of nonlinear equations but
possibly lead to more accurate — than the approximation outlined in [44] — approximation of
the marginals. In this paper, we propose a novel approach with which one can get fast, high
quality estimators solving a set of decoupled, linear systems of equations. It is based on the
fact that, given a Gibbs distribution with energy of the form:

U®) =2 Vob(r)) +8 > Vi(b(r).b(s)) (6)

relL <r,s>

where the b’s are random K —vectors satisfying: bg(r) € {0,1} and YK | by(r) = 1 for all
r € L, and V; is an Ising potential, then, the marginals my(r) = Pr(bg(r) = 1) may be
approximated by the expected value of random vectors p that admit a Gibbsian model with
energy of the form:

Up(p) = Y Ip(r) =p(r) P+ X > Ip(r) — p(s)I? (7)

relL <r,s>



where py(r) = % exp [~Vp(ex)] with Z a normalizing constant and where e, is a unit vector
with a 1 in the k™ position. (see [33] for details). Therefore, an approximation to the
marginals may be constructed by minimizing (7), that is, by solving K sets of decoupled
linear equations, that result from setting the partial derivatives of Up, with respect to the
variables pg(r), equal to zero. These equations are of the form:

T+ AN pr(r) + X D prlr) = pr(r) (8)
seEN,NL

where N, denotes the neighborhood of voxel r (i.e., its 6 nearest neighbors for interior voxels).
The EM algorithm, however, may be quite sensitive to errors in the estimated marginals (see
section 2.2). Therefore, if this fast approximation procedure is to be used, it is necessary
to modify the algorithm to make it more robust with respect to this kind of errors. This
modified algorithm will be described in the next subsection.

2.2 The MPM-MAP Algorithm

The algorithm we propose for the simultaneous estimation of b and 8 is based on Bayesian
estimation theory. In this approach, we consider b and 6 as random vectors whose optimal
estimators are to be found via the minimization of the expected value of an appropriate cost
function, taken with respect to the posterior distribution. The cost function we propose is:

C(0,8,b,6)=1—6(6 — |L|Z[1—( r) = b(r))] 9)

where the ¢ functions equal 1 if their argument is the 0 vector, and equal 0 otherwise.
The first term requires that the estimated parameter vector 9 be — on the average — a
perfect estimator, while the second term requires that the estimated indicator functions b
for the support regions, minimize the expected number of segmentation errors. Denoting
Q(Z, 5) =F [C(g, 0,0, 9)}, the optimal estimators (E*, 5*) are, therefore,
(/Z;*, é\*) = arg min Q(Z, 5)
b0

To minimize Q we propose a 2-step procedure in which Q(b 0) is mlnlmlzed with respect to
b for a given 0 in a first step, and then minimized with respect to 9 keeping the optimal
b fixed, in the second step. To derive the 1mplementat10n of the first step, we take the
following into consideration: suppose that 0 =0is given. The optimal estimator for b is
found by minimizing the expected value of the second term of Eq. (9):

S [1-8(b(r) = b(r))] P(b.8lg) (10)

b rel

K
= L= >0 m(r)be(r)

rel k=1



where

m(r)= Y P(b.0lg) (11)

b:bk (7‘):1

is the posterior marginal probability for the support region %k at pixel r. Expression (10)
is minimized by setting b = b, where b(r) = 1, if m(r) > mp(r) for k' # k,and by(r) =
0, otherwise. This estimator is called the Maximizer of the Posterior Marginals or MPM
estimator [32] for b given 0.

To minimize () with respect to g for a fixed b = b one needs to consider only the expected
value of the first term of (9), so that the optimal (Maximum a Posteriori or MAP) estimator
for @ is found by minimizing U (b, 0) (Eq. (4)) with respect to #. The complete algorithm is
therefore:

Algorithm 1

1. Compute an initial estimate b = b(¥) for the segmentation indicator variables and set

t=0;
2. Until convergence do steps (3-4):
3. MAP-step: compute 8¢+ = argming U(D, 0) ;
4. MPM-step:

(a) Compute the estimators pg(r) for the posterior marginals g (r), r € L, k= 1,..K
solving the linear system (8).

(b) Set bi(r) = 1, if p(r) > p(r) for k' # k,and by(r) = 0, otherwise; set t :=t +1 ;

The convergence of the algorithm follows from the facts that @ is bounded below (it is
always non—negative) and that it cannot increase in one full iteration; it could converge to a
limit cycle, but in practice it is found to converge to a fixed point. Note that this algorithm is
more robust than EM [12] with respect to errors in the estimation of the posterior marginals
{mk(r)}, because only the location of the mode of each distribution w(r) is of consequence.
This is illustrated in Fig. 1, where we show the solutions found by the two procedures in the
estimation of piecewise constant models (i.e., ®(r, ;) = 6i) for the gray-level segmentation
of an image. To simplify the computations, we assumed no spatial coherence term (i.e., 5 = 0
in Eq. (6)), so that the marginals can be exactly computed: they are equal to the normalized
likelihood, which for the assumed Gaussian model is:

1 (9(r) — 0x)®
m(r) = = exp | —F———

k(1) = 7 exp l 202

where Z is a normalizing constant. We assumed that the o parameter is not known, and
studied the convergence behavior as its value is varied between 0 and 1 (its true value is 0.2).
The initial models were computed using the windows shown in the upper left panel. EM
always finds three models; for low values of o, two of these models have the same value for



6 — which is very close to the true value §; = 1.0 — for intermediate ¢ values they have
different 6 values, and for high o values they collapse into a wrong intermediate value of
= 1.5. In contrast, MPM-MAP is practically insensitive to these variations, and always finds
2 models with the correct values 61 = 1 and 6y = 2.

2.3 Parametric Models of the Intensities in Each Tissue Class

To complete the specification of our approach, it is necessary to define the parametric models
that represent the spatial variation of the intensity within each tissue class. These intensity
variations are due to several causes: the primary one is connected with variations in the
sensitivity of the receptor coils, and is well explained by the multiplicative bias model of
Eq. (1). There are other factors, however, for which this model is not so appropriate
[38]; these include: induced currents; non—uniform excitation; variation of electromagnetic
properties of biological tissues, etc. For this reason, in this paper we use a more general
approach in which the variable intensity for each class is separately modeled. The choice of
the appropriate parametric models is important: polynomial models are usually too rigid (if
their degree is low like in planar surfaces) or too flexible (for high degrees), so that a single
model may fit more than one class. What is needed, therefore, are models that can account
for smoothly varying intensities and are easy to compute given the support. Here, we use
spline models with a Gibbsian prior P(f) that imposes a controlled smoothness constraint.

This is equivalent to a finite element approximation to a membrane spline. In particular, we
define the model ®(r,0y) as:

m

(r,0k) = > N;(r)0; (12)
7j=1

where {N;} are the classical trilinear interpolation functions used for the 8-node Lagrangian
element[46], and the parameters 6y, correspond to the height of the membrane at the m
nodes of the finite element mesh.

The smoothness constraint is specified in the form of a Gibbs distribution:

P(O) = 5 exp |- [ 1Va(r.00)Par] (13)

where Z is a normalizing constant and 7 is a parameter. Note that using (12), the integral in
(13) may be evaluated as a quadratic form in the parameter vector ;. The value for these
parameters is found in the MAP step by minimization of:

= > bel(r) (B(r, 0k) — g(r))” (14)

relL

+ /L VD(r, 6;) (r) |2dr

This scheme allows one to model arbitrary smooth shapes, while retaining sufficient control
on the smoothness of each model (given by the positive parameter n). Substituting (12) into
(14) and setting the partial derivatives of Uy with respect to the parameter vector 6 equal to



zero, one obtains a system of linear equations whose solution gives the optimal parameters.
In this way, the whole procedure involves only the solution of linear systems (in both the MAP
and MPM steps) and is, therefore, computationally efficient.

Note that these membrane models have more degrees of freedom than the standard mul-
tiplicative model (1), which may be considered a particular case; if the data is in fact consis-
tent with (1), then one should have that, for all class pairs 4, j, ®(r,0;) =~ R;;®(r, 6;), where
Ri; = pi/pj is a constant, for all voxels r that are close to the regions of validity of models
i and j (i.e., close to the boundary between classes ¢ and j). This fact may thus be used to
test experimentally the validity of model (1), which we do in section 4.

In the case of multimodal data sets, i.e., when several pulse sequences are used, the use
of decoupled membrane models presents an additional advantage; since some pulse sequences
are more sensitive to magnetic inhomogeneities than others, fitting a separate membrane for
each tissue class and each pulse sequence permits a more accurate modeling that takes this
effect into account.

2.4 Prior Class Probabilities and Automatic Initialization

To improve the performance of a segmentation method, we should take advantage of domain—
dependent relevant information. In the particular case of brain MRI, we consider the fact that
the location of the main anatomical structures is approximately the same in most subjects,
if the brain is brought to a standard position and scale. Therefore, it should be possible
to incorporate into the segmentation procedure, prior information about the approximate
location of the different tissue classes. This information may then be used to provide an
initial approximate segmentation to initialize the algorithm (step 1 in section 2.2) and also
to estimate the prior class probabilities for each voxel (gx(r) in Eq. (4)). The class location
information may be obtained from statistical studies, in which hand-segmented MRI’s for
a given population of subjects are brought to a standard pose, so that the frequencies with
which each tissue class appears at each standard voxel location can be computed. One such
study, based on a population of 151 normal subjects, is available in [1], and is the one we used
in our experiments. To incorporate this information in our procedure, it is necessary to find a
transformation that maps the standard anatomical model (to which the intensity distribution
is referred) into the specimen to be segmented. A robust and precise registration procedure is
crucial for the success of the complete algorithm; we use a 2—step registration scheme: in the
first step, an affine transformation is found (of the form T4 f[r] = Ar + b, where Ais a 3 x 3
matrix and b is a 3—vector), so that it minimizes the sum of square differences between the
intensities derived from the transformed anatomical model and the specimen. For this, we
use a multi-scale Broyden—Fletcher—Goldfarb-Shanno (BFGS) minimization method [13]. In
the second step, a non—rigid transformation that refines the affine map found in the first step
is computed using a level-set based Partial Differential Equation (PDE) scheme described in
[41]. The governing equation of the non-rigid registration method is given by

oV VI (V(x))

a0 = (RO~ Ve TG N

5 (15)

10



where V(x) = (z + u,y + v,z + w), (u,v,w) defines the displacement field at each point
on the image grid x = (z,y,2). This is a nonlinear hyperbolic partial differential equation
characterizing the non-rigid deformation field V' (x). We solve this equation using minmod
finite difference techniques for automatically determining the time step (see [41] for details).
Most often than not, the computed non-rigid deformation is not smooth, and one way to
obtain a smooth deformation field is to apply to the vector field obtained from the above
equation at each iteration a linear smoothing operator S, e.g., a Gaussian filter with a small
fixed variance.

There are other schemes that have been used to do atlas-based segmentation. In Chen
et.al., [5], an atlas-based segmentation scheme is described that uses expert input to define
the atlas and then warp it to the subject brain MRI to segment the subject brain which is
then followed by morphometrics. Their algorithm is almost identical to the work reported in
Dawant et.al., [10] and Thirion [39]. These methods have been compared with the technique
in Vemuri et.al., [41] — used here — and the latter has been shown to outperform these
techniques in computational efficiency and accuracy. In [25], atlas-based segmentation was
achieved using the so called fluid-flow model introduced by Chritensen et.al., [6]. A more
general and mathematically thorough treatment of the non-rigid registration which subsumes
the fluid-flow methods was presented in Trouve [40]; this last method, however, has not been
used in atlas-based segmentation applications.

Once the complete (affine+non-rigid) transformation 7" is computed, it is used for the
following purposes:

1. To map a mask that separates brain from non—brain tissue. Note that since a “hard”
brain segmentation is performed, it is unnecessary to include an “outlier class” for
non-brain tissue, as in [31] or [20].

2. To map the anatomical model to get an initial segmentation.

3. To map the empirical frequencies f; obtained from the statistical study, from which
the prior probabilities may be estimated.

We have found that it is not convenient to make the prior probabilities equal to the empirical
frequencies as in [31], since class distributions may have wide variations in populations which
are different from the one on which the study is based. Therefore, it is convenient to mit-
igate their effect on the prior probability estimates by contaminating them with a uniform
distribution, so that the prior probability field is estimated as:

() = afi(r) + (1 - ) (16)

where K is the number of classes considered and « € [0, 1] is a parameter that weights the
influence of the empirical frequencies.

2.5 Complete Segmentation Procedure

In summary, the complete segmentation procedure we are proposing consists of the following
steps:

11



1. Find the complete transformation 7T that maps the standardized (atlas) space into
the specimen space using the procedure of section 2.4. This procedure consists of the
following steps: let Ir denote the reference (atlas) volume, and Ig the specimen.

a) Find the optimal affine transformation parameters A*, b*:

(A*,b") = arg rﬁ?})l%([R(Ar +b) — Ig(r))?
using a multiscale BFGS minimization algorithm.
b) Find the affine-transformed reference image Ig(r) = Ir(A*r + b*)
¢) Set the initial non-rigid deformation field V(O (r) = »

d) Iterate until convergence:

; VIR(VY(r)
V(ir) = VOE) + (Is(r) — Ig(VO () 22
") () + Usr) ~ IV ) s

vl = s(v)
where S is a smoothing operator.

Let V* be the fixed point of this iterative procedure, and let I be an image in the atlas
(reference) space. The corresponding transformed image I in the specimen space is
found as:

A

I(r) = I(V*(r)) (17)
with I(r) = I(A*r + bx).

2. To peel the brain, obtain from the mask I, that separates the brain parenchyma from
non—brain tissue in the atlas, the transformed mask Ij; using (17) and apply it to the
specimen.

3. Obtain the transformed empirical frequencies for each tissue class fk, k=1,2,3, from
the reference ones using (17), and compute the prior class probability field using (16).

4. Obtain the transformed segmentation b from the atlas anatomical model using (17) and
set the initial segmentation b(®) = b.

5. Apply the MAP-MPM algorithm (Algorithm 1 of section 2.2) until convergence.

In the case of multi-band images (e.g., T1, T2 and PD weighted MRI), the individual
images have to be registered separately, and a different membrane model has to be adjusted
for each band in the MAP step in a decoupled manner. One finds, however, a unique
segmentation in each MPM step.

This procedure has a number of parameters: vy in equation (2); A in Eq. (7); 7 in Eq.(13)
and « in Eq.(16). The best value for these parameters has to be hand—picked using a trial
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and error procedure on a test image. Once these values are found, however, they may be used
in different data sets without need of further tuning, since the performance of the method
is quite insensitive to their precise value (see section 3). The values we have used in all the
experiments reported in the next section, both for synthetic and real data, are: v = 1 ;
A=0.1;7n=1000 and a = 0.1. The finite element mesh size used in all our experiments to
be described in the next section is (32, 32,8).

3 Experimental Validation

To validate the performance of our method, we performed 2 sets of experiments, one on
simulated MR and another on real MR brain scans. In the first set, we used the simulated
MR images of the head generated using the BrainWeb MR simulator [8, 28, 9]. Since in this
case, the anatomical model (ground truth) available, it is possible to obtain a quantitative
assessment of the performance of the algorithm, under different conditions. It is important to
note that the original MRI simulator described in [28] had the limitation of producing sharp
tissue boundaries in simulated images, due to the discrete nature of the labelled data set
(phantom), and thus, Partial Volume Effects (PVE) were not appropriately modeled. The
version we are using, however, includes the “fuzzy phantom” developed in [9], where instead
of assigning a voxel to a given tissue class, one has a 3-D tissue model, with one volume
per class, where voxel intensity represents the fraction of tissue (between 0 and 1) within the
voxel. The MR simulator described in [28] is used to predict image contrast, and the phantom
is used to map tissue intensities into images. The simulated volumes available in [8], therefore,
account for the effects of partial volume averaging, noise and spatial inhomogeneities. We
considered the following cases:

1. T1 weighted images with 1 through 9 % noise levels and no spatial inhomogeneity.

2. Same as (1), with 40 % spatial inhomogeneity (i.e., with intensity variations of up to
40 % for each tissue class).

3. Multi-band (T1, T2 and PD weighted) data with 1 through 9 % noise and 40 % spatial
inhomogeneity .

The technical data pertaining to these simulations are shown in table 1. Since these exper-
iments were also reported in [31], in order for the results to be meaningfully compared, we
used the performance index reported therein. This index is defined as:

2Vbﬁg(k)

hik = o v,m

(18)
where Vjng(k) denotes the number of voxels classified by both the proposed method and
the ground truth as class k, and V,(k) and V,(k) represent the number of voxels classified
as class k by the proposed method alone and by the ground truth, respectively. Note that
this index will take the value 1 if the proposed method coincides with the ground truth,
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and will decrease as the quality of the segmentation deteriorates. The results are shown in
Figures (2) and (3) respectively. As one can see, the proposed method shows an excellent
and stable performance, outperforming the best results (to our knowledge) reported to date
in literature. A sample of the segmentation results is presented in Figure (4). The figure
depicts corresponding slices from the ground truth (panel d), automatic segmentation (panel
e) and segmentation errors, as well as the final estimated intensities, using separate membrane
models for each tissue class and each pulse sequence (panels g-i).

It is interesting to note that the benefits of using multi-band images over using only T1
weighted data are relatively small, while the increase in computational load is significant,
which suggests that, for segmentation purposes, it might often be more convenient to use
only single band, say T1 weighted images.

We also performed experiments with these simulated images to test the sensitivity of
the method with respect to the precise setting of the control parameters. Specifically, we
investigate the influence of:

1. The weight of prior probabilities (i.e., a in Eq. (16)).

2. The weight of the spatial interacion term (X in Eq. (7)).

3. The rigidity of the membrane intensity models (n in Eq. (13)).
4. The value of the noise parameter ~.

For the test volume, we take the “worst case” simulation (9 % noise and 40 % spatial
inhomogeneities). We do not test here the factors related to the registration with an atlas,
since in this case the atlas and simulated images are already registered. The results are
presented in table 2; in each case, when a parameter value was varied, the others were kept
fixed at their default values. As one can see, the performance is relatively stable, which is the
reason why one can use the same (default) parameter values for all the experiments reported
here.

We also performed experiments to test the effect of replacing the MPM-MAP algorithm
by the standard EM procedure, with the Mean Field algorithm [44, 16, 43, 22| for the E step,
using the same test volume. In this case we find practically the same performance (indices
equal to 0.885 for CSF, 0.87 for GM and 0.89 for WM), but the processing time increases
from 248 sec. (for MPM-MAP) to 466 sec. (for EM).

Showing good performance with simulated data, however, is not sufficient to validate a
segmentation procedure. It is also very important to test it with real images and compare
it with other published methods. This comparison is difficult to do, because most of the
published methods work with different data sets. To overcome this problem, we use the
20 normal MR brain data made publicly available on the world wide web by the Center
for Morphometric Analysis at Massachusetts General Hospital (MGH). In addition, manual
expert segmentations and performance results from five automatic segmentation methods
are also provided at this site [23], making it convenient to compare our results with those
reported by the five automatic methods. The 20 coronal scans of this data set were chosen
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because they have been used in published volumetric studies in the past, and because they
have various levels of difficulty; the worst scans have low contrast and relatively large spatial
inhomogeneities. Hence, these test images permit a standardized mechanism for testing the
sensitivity of a proposed segmentation method to signal to noise ratio, contrast to noise ratio,
shape complexity, degree of partial volume effect, etc.

The repository also contains performance indices that measure the amount of overlap
between the expert hand—guided segmentation and a collection of automatic methods. The
index in this case is the Tanimoto coefficient [14], and is defined as:

— Vpﬁg(k)
Ig(k) a %Ug(k)

where Vng(k) denotes the number of voxels classified as class k by both the proposed method
and the expert (taken in this case as ground truth), and Vju4(k) denotes the number of voxels
classified as class k by either the proposed method or the expert. It should be noted that
for a given automatic classification and ground truth, one always has that I»(k) < I;(k)
(although both indices range from 0 to 1), where I; is given by Eq. (18).

We applied our method to the twenty complete head MR scans in this data set, using
the same parameter values in all cases, which were also the same values used to segment the
simulated data, i.e., v = 1, A = 0.01, = 1000 and « = 0.1, so that it may, in effect, be
considered an automatic procedure. The results are summarized in table 3 and figure (5). The
dimensions of the image stacks were 256 x 256 x 64 voxels, and the average total processing
time (including registration for peeling the skull and non-brain material and segmentation)
was 29 minutes on a single processor of an SGI ONYX machine. As one can see, these
results are significantly better than all other reported methods (see [35] for details on these
other methods). Figure (6) depicts a sample of our segmentation results, together with the
corresponding expert (ground truth) segmentation. We used an itensity value of 255,170 and
85 to depict the WM, GM and CSF pixels respectively.

A final validation was performed by computing the performance indices Is, comparing
a manual segmentation performed by an expert radiologist (Dr. Fernandez—Bouzas, M.D.)
with the automatic segmentation, for a MR volume not included in the MGH data base. The
index values were 0.82 for WM and 0.84 for GM.

An interesting question is to quantify the relative importance of each feature in the overall
efficiency of the method. To answer this, we performed a set of experiments to investigate
the influence of each one of the following factors:

1. Use of spatially varying prior class probabilities (i.e., using o > 0 in Eq. (16)).

2. Use of an anatomical model registered with the specimen to be segmented to initial-
ize the method vs. using a more standard initialization procedure (e.g., equispaced
constant intensities as initial models).

3. Use of a prior spatial coherence (MRF) model (i.e., using A > 0 in Eq.(7)).
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4. Use of spatially varying (membrane) intensity models, instead of constant intensity

5.

models.

Use of the non—parametric, level-set-based refinement after the multi-scale affine regis-
tration.

We applied our segmentation procedure by varying these factors, one at a time, on the
20 brains of the Mass. General data base. The average performance indices obtained in each
case, together with the average time required for the segmentation (MPM-MAP phase only,
excluding the registration step) are shown in table 4.

From these results one can draw the following conclusions:

1.

The most important feature of the method is the inclusion of prior probabilities derived
from statistical studies. This emphasizes the importance of performing such studies,
as well as of developing more precise and efficient registration procedures that map
individual brains into a standard space.

. Using the deformed anatomical model instead of equi-spaced constant intensity models

to initialize the method has a significant effect on the performance, and makes the
method significantly faster. The importance of this initialization procedure is even
greater if multi-band (T1, T2 and PD weighted) data are used, since in this case one
cannot simply use equi-spaced intensities, but one must estimate the multi-band models
based on randomly placed windows, which may have a greater adverse effect on the
performance.

The use of membranes instead of constant intensity models has a significant effect
on the average performance, which is consistent with the fact that significant spatial
inhomogeneities (bias) were present in several brains of the data set.

The use of the non-parametric, level-set based refinement of the multi-—scale affine
registration has little effect on the average performance for the test data. However,
application of this non-rigid registration of priors might show helpful in cases with
strong morphological differences. The average registration time is 5.4 minutes for the
affine registration, and 4.3 minutes for the refinement. Since the refinement step does
not take too much time, it is definitely worth doing to obtain better performance.

The inclusion of a prior MRF to model spatial interactions had, by itself, only a minor
effect on the performance, due to the fact that spatial inhomogeneities played a more
significant role than noise in these data. To corroborate this, we evaluated this effect on
the performance indices obtained with the synthetic MRI images available from [15].
In this case, the performance indices for both gray and white matter showed a 6 %
increase when spatial interactions were included, for data with 9 % noise, but showed
practically no change when the noise level was below 3 %.

Finally, we note that although these experiments give an indication of the effect of each
feature used by our method, there is, without doubt, a synergistic effect between them, which
explains the effectiveness of our procedure when they are used together.
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4 Discussion and Conclusions

The Bayesian estimation framework is very convenient for MRI segmentation, because it
permits the inclusion of explicit models for the spatial coherence and location of the different
tissues, as well as for the spatial inhomogeneities of the corresponding image intensities caused
by the bias field in the magnetic field of the MR instrument. For Bayesian-based methods to
be effective, however, it is crucial to have: realistic spatially varying models for the intensity
of each class; efficient and accurate ways for computing optimal segmentations given these
intensity models and robust and precise registration procedures, so that prior information
about the location of anatomical structures may be incorporated.

We have presented here a fully automatic method that incorporates these features, and
therefore depicted a competitive performance with existing methods reported in literature.
The method has a number of control parameters that need to be adjusted; its performance,
however, is not too sensitive to their precise setting; thus, it is possible to find suitable values
using images with known ground truth, and then use these default values to segment new
real data. This is the approach we followed here: the same parameter values were used for
all the experiments presented here, both for simulated and real images.

An important issue is related to the fact that the method we are proposing produces
a “hard” segmentation, which means that each voxel is assigned to only one tissue class,
whereas in reality, many voxels may have a mixture of 2 tissue classes (the so called Partial
Volume Effect or PVE). One would hope, however, that since the method is not biased
towards any particular class, these effects would tend to cancel out when total volumes are
computed. To test this hypothesis, we computed the error in the total volume using the
segmentation produced by our method, with respect to the true volume (which takes into
account the PVE) of the anatomical model of the Brainweb MR simulator [8, 28, 9]. We
found that for the case with 40 % of spatial inhomogeneities, and with up to 5 % noise one
gets less than 1 % error in the total volume for GM and less than 2 % error for WM. We
think these error rates are acceptable: in the MGH data base, it is reported that if one
uses index Is to measure the agreement between hand—guided segmentations performed by
2 different experts, one gets values of 0.83 for WM and 0.87 for GM. This means that the
total computed volumes for the corresponding tissues could differ by up to 17 % (resp. 13
%). Compared with these figures the errors induced by the PVE do not seem significant, at
least for this task.

Another important question is related to the adequacy of a single multiplicative bias
(Eq. (1)) for modeling the intensity variations of all tissue classes. This may be tested by
computing the ratio of the estimated individual class intensities (using membrane models,
which include the multiplicative bias model as a particular case; see section 2.3) for voxels that
lie in the neighborhood of the corresponding inter—class boundary; we consider specifically
gray and white matter (classes 2 and 3). If the multiplicative bias model is correct, one
should have that ®(r, 0y) ~ prB(r) and hence,

Roz(r) = ——= =~ 22 — constant



One may compute the maximum absolute deviation:

Dz = 100 x max [Ras(r) — Ras|
r€Na3 R23

where Rs3 is the average of Ro3(r) taken over Nag, which denotes a tubular neighborhood,
2 voxels wide, around the boundary between classes 2 and 3. For synthetic MRI (from the
Brainweb simulator), one has that, even in the case of 40 % spatial inhomogeneity and 9 %
noise, Dipqy is small (less than 6 %). This is not surprising, since the bias was artificially
introduced in the simulation using the multiplicative model. For real images (i.e., for the
MGH data base), however, one finds values of Dy, as high as 30 %, which indicates that
factors different from sensitivity variations in the reception coil may have a significant effect,
so that the multiplicative bias model may not be adequate, and it may be preferable to use
individual bias models for each class, as is done in this paper.
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Pulse Sequence T1 T2 PD
Scan Technique Spoiled Flash | Dual Echo Spin Echo, | Dual Echo Spin Echo,
Late Echo Early Echo
Rep. Time TR (ms) 18 3300 3300
Echo Time TE (ms) 10 35, 120 35, 120
Flip Angle (deg.) 30 90 90

Table 1: Technical data for the simulated MRI used in the experiments

CSF | GRAY | WHITE
Default 8899 | .8742 | .8894
A=0.0 8863 | .8693 | .8849
A=0.005 | .8854 | .8718 | .8868
A=.1 8846 | .8693 | .8877
n = 100 8867 | .8747 | .8919
n = 10000 | .8798 | .8595 | .8742
=00 8759 | .8545 | .8698
o= 8759 | .8428 | .8788
a=.05 8846 | .8907 | .8854
3 8771 | 8826 | .8852
=4 8523 | .8871 8753
S
6

8174 | .8790 | .8616
7662 | .8675 | .8467
.8900 | .8683 | .8809
8866 | .8662 | .8872

Table 2: Sensitivity of the performance indices to variations in the value of the control
parameters for simulated MRI.
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Method | GM | WM |

adaptive MAP 0.564 | 0.567

biased MAP 0.558 | 0.562

fuzzy c-means 0.473 | 0.567

Maximum a Posteriori Probability (MAP) | 0.550 | 0.554
tree-structure k-means 0.477 | 0.571
Maximum-Likelihood 0.535 | 0.551
MPM-MAP 0.662 | 0.683

Manual (4 brains averaged over 2 experts) | 0.876 | 0.832

Table 3: Average Overlap (performance indices) between manually-guided segmentations and
various methods for the 20 brain scans of the MGH data base.

\ | CSF | GM [ WM | Seg. Time (min.) |

Complete Procedure 227 | .662 | .683 19.2
No prior Probs. .168 | .579 | .654 19.3
Std. Initialization 211 | 648 | .644 32.8
No prior MRF 227 | .659 | .680 19.2
Constant intensity mod. | .220 | .645 | .650 10.3
No refinement in regist. | .248 | .648 | .684 18.3

Table 4: Effect of different features of our algorithm on the average performance indices and
on the average processing time for the 20 brain scans of the MGH data base.
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Figure 1: Comparison of EM and MPM-MAP algorithms with respect to errors in the esti-
mation of the posterior marginals
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Figure 2: Performance indices for the segmentation of MRI simulated data (from the brainweb
[8]) with 0% spatial non-homogeneities, using our algorithm and the one in [31] (labeled KVL)
(a) for WM and (b) GM
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Figure 3: Performance indices for the segmentation of MRI simulated data (from the brainweb
[8]) with 40% spatial non-homogeneities, using our algorithm and the one in [31] (labeled
KVL) (a) for WM and (b) GM
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Figure 4: (a-c): T1, T2 and PD weighted simulated images from Brainweb database, with 9%
noise and 40% spatial inhomogeneity. (d) Anatomical model (ground truth). (¢) MPM-MAP
segmentation (f) MPM-MAP segmentation errors (white pixels) (g-1) Estimated intensities
(membrane models) for the images in panels (a-c)
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Figure 5: Performance indices for the individual brains of the MGH database for different
segmentation methods. The bold line corresponds to our method. Above: WM; below: GM.
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Figure 6: Sample images from the MGH database. On each row: left: original image; center:
MPM-MAP automatic segmentation; right: expert hand-guided segmentation (see text for
details).

29





